WORKED-OUT *t*-TEST **WORKSHEET**

(Using the dog and cat data from Table 3.1, p. 19.)

	Group 1: Dogs sleeping		Group 2: Cats sleeping	
	(a)	(a) × (a)	(b)	(b) × (b)
1	8	64	14	196
2	9	81	5	25
3	5	25	7	7
4	8	64	8	8
5	7	49	7	7
6				
7				
8				
9				
10				
11				
12				
13				
14				
15		•		
Sum	37 (c)	283 (d)	41 (e)	383 (f)
Count	5 (g)		5 (h)	

Step 1: Enter data in table in rows (a) and (b).

Step 2: Square (a) and put in column (a) \times (a); square (b) and put in column (b) \times (b).

Step 3: Sum columns (a), (a) \times (a), (b) and (b) \times (b) and put results on Sum row.

Step 4: Count measures in column (a) and (b) and enter them on the Count row.

Step 5: Calculate:
$$\frac{(c) \times (c)}{(g)} = \underline{273.8}$$
 (i)

$$\frac{\text{(e) x (e)}}{\text{(h)}} = 336.2 \text{ (j)}$$

Step 6: Calculate: (d) – (i) =
$$9.2$$
 (k)

$$(f) - (j) = 46.8$$

Step 7: Calculate: (k) + (l) = _____56___(m)

APPENDIX IX

Step 8: Calculate:
$$\frac{(m)}{(g) + (h) - 2} = \frac{7}{(h)}$$
 (n)

Step 9: Calculate: $(n) \times \left(\frac{(1)}{(g)} + \frac{(1)}{(h)}\right) = (n) \times (\underbrace{0.2} + \underbrace{0.2}) = \underbrace{2.8}$ (o)

Step 10: Calculate: $\sqrt{(o)} = \underbrace{1.67332}$ (p)

$$\frac{(c)}{(c)} \qquad \qquad (e)$$
Step 11: Calculate: $(g) = \underbrace{7.4}$ (q) $\qquad (h) = \underbrace{8.2}$ (r)

Step 12: Calculate: $(q) - (r) = \underbrace{0.8}$ [(s) (Note: Absolute value of [s])

$$\frac{(s)}{(s)}$$
Step 13: Calculate: t -statistic = $(p) = \underbrace{0.478}$
Step 14: Calculate: degrees of freedom $(d.f.) = (g) + (h) - 2 = \underbrace{8}$

5% Significance Table				
Degrees of freedom	Critical value	Degrees of freedom	Critical value	
4	2.78	15	2.13	
5	2.57	16	2.12	
6	2.48	18	2.10	
7	2.37	20	2.09	
8	2.31	22	2.07	
9	2.26	24	2.06	
10	2.23	26	2.06	
11	2.20	28	2.05	
12	2.18	30	2.04	
13	2.16	40	2.02	
14	2.15	60	2.00	
		120	1.98	

You must now compare your calculated t-statistic to the appropriate value in the significance table. Find the table value beside the appropriate degrees of freedom and enter it below.

Critical value: 2.31

Calculated t-statistic: 0.478

If the *t*-statistic you calculated is *less than* the critical value in the table above (for the correct degrees of freedom), then the difference between the two means is *nonsignificant*. This indicates that there is statistically *no difference* between the Group 1 and Group 2 data.

If the calculated *t*-statistic is *greater than* the critical value in the table above (for the correct degrees of freedom), then the difference between the two means is statistically *significant*. This indicates that *there is a statistical difference* between the Group 1 and Group 2 data.

NONSIGNIFICANT